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ABSTRACT
In many real world situations, like minor traffic offenses in big

cities, a central authority is tasked with periodic administering

punishments to a large number of individuals. Common practice

is to give each individual a chance to suffer a smaller fine and be

guaranteed to avoid the legal process with probable considerably

larger punishment. However, thanks to the large number of offend-

ers and a limited capacity of the central authority, the individual

risk is typically small and a rational individual will not choose to
pay the fine. Here we show that if the central authority processes

the offenders in a publicly known order, it properly incentives the

offenders to pay the fine. We show analytically and on realistic

experiments that our mechanism promotes non-cooperation and

incentives individuals to pay. Moreover, the same holds for an arbi-

trary coalition. We quantify the expected total payment the central

authority receives, and show it increases considerably.
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1 INTRODUCTION
In this work, we study a special case of a classic dilemma, how to

effectively enforce a rule in a large population with only a very

small number of enforcing agents. This task is impossible if the large

population cooperates and thus a critical aspect of any suggested

mechanism is the promotion of non-cooperation. A well-known

count Dracula way is to make the punishment for breaking the

rule extremely severe. We suggest an alternative mechanism, for a

special case of the dilemma motivated by collecting fines for traffic

violations.

In many large cities, there is a huge number of traffic offences,

highly exceeding the capacity of state employees assigned to man-

age them. The assigned state employees should primarily concen-

trate on serious and repetitive offenders. However, a large number

of minor offences are still to be settled which makes the former

considerably harder. A common practise is that a smaller fine is
assigned in an almost automated way and if an offender settles

this fine then the legal process does not start. Otherwise, the legal

process should start with considerably larger cost for the offender.

The offence is also forgotten after a certain judiciary period.
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However, thanks to the limited capacity of state employees, legal

processes for non-repetitive minor traffic offenses are typically

enforced in a small number of cases
1
. The individual risk is thus

small and a large fraction of the offenders choose to ignore the

fine. In this paper, we propose a simple mechanism which properly

incentives the offenders to pay the fine even under these conditions.

1.1 Main Contribution
In our proposed mechanism, the central authority processes the

offenders in a given order. Each offender is aware of his position in

this ‘queue of offenders’ and has the option of publicly donating

money to a fund of traffic infrastructure or a charity predetermined

by the central authority. If their total donations amount to at least

the fine, it is used to settle the offence. After the judiciary period

expires, or if the legal process is started, the fund retains the individ-

ual donation. The central authority periodically sorts the offenders

in ascending order of their average donation, and starts the legal

process with those who paid the least on average.

Compared to processing the offenders in random order, this

mechanism increases the individual risk of some offenders. This

incentives them to pay the fine, which in turn puts others in danger.

We show both analytically and on realistic experiments that under

the proposed mechanism, the strategic behaviour of the offenders is

to engage with the mechanism, and quantify the expected revenue

of the charity. Moreover, we show it is not beneficial for any group

of offenders to ignore the mechanism and share the cost of those

who enter the legal process. Finally, we study how the central

authority can most efficiently use its limited capacity to maximize

the revenue of the charity.

1.2 Related Work
To our best knowledge, the field of non-cooperative mechanism

design has not been studied extensively yet. Our approach is some-

what similar to that of [2], where the authors consider a variation

of the elimination game which includes bids.

Our model can also be viewed as a generalization of the stop-

ping games [5], where participants choose a time to stop bidding

and trade off their gain from outlasting other players for the cost

accumulated over time in the game. In our case, the “prize” won by

the lowest paying participant is cost of entering the legal process.

However, both approaches did not consider the ranking of play-

ers, which is at the core of our mechanism.

2 PROBLEM DEFINITION
Informally, we model the interaction of agents as a game we call

Queue. Queue consists of a finite sequence of Round, in which each

1
For instance, in the city of Prague considerably more than 100 000 such offenses are

dismissed every year because the judiciary period expires.



agent can choose to pay, however with some probability they forget

and pay nothing. Those who paid at least the fine in total, or spent

enough time in Queue are removed. The rest is ordered according

to the amount they paid on average. A fixed number of those at the

start are then forced to pay a large penalty, and leave Queue. Let

us now define the interaction formally, starting with how Round is

realized.

2.1 Round: One Step in Queue
Round is a parametric game O (N)=O(N , 𝐹 ,𝑄,𝑇 , 𝑘, 𝑝), whereN is

an ordered subset of agents
2
, 𝐹 ∈ N is the fine, 𝑄 > 𝐹 is the cost

associated with entering the legal process, 𝑇 ∈ N is the judiciary

period, i.e., the number of Round instances after which agents are

removed, 𝑘 ∈ N is the number of agents forced to pay 𝑄 in each

Round, 𝑝 ∈ [0, 1] is the probability of ignorance.

Each 𝑎 ∈ N is characterized by a triplet (𝑛𝑎, 𝑡𝑎,𝑚𝑎) and his strat-
egy 𝜋𝑎 . The triplet corresponds to his observations — his position

𝑛𝑎 inN , the number 𝑡𝑎 of past Round games he participated in, and

his total individual payment𝑚𝑎 in the past Round games.

Round proceeds in three phases

(1) Each agent 𝑎 ∈ N , based on his observation, declares his

strategy for this Round 𝜋𝑎 ∈ Δ𝐹+1
, where Δ is the probability

simplex. His payment 𝜇𝑎 is then sampled from
3

𝜇𝑎 ∼ 𝑝𝜎0 + (1 − 𝑝)𝜋𝑎 (𝑛𝑎, 𝑡𝑎,𝑚𝑎), (1)

where 𝜎𝜈 is the pure strategy of paying 𝜈 .

(2) Each agent’s total payment and time is updated

𝑚𝑎 ←𝑚𝑎 + 𝜇𝑎, (2)

𝑡𝑎 ← 𝑡𝑎 + 1, (3)

and N is sorted
4
according to the ratio of current total pay-

ment and time𝑚𝑎/𝑡𝑎 .
(3) Some agents are removed from N , which is done in three

sub-phases. We call such agents terminal and denote the set

of terminal agents in this Round as T .
(a) All agents 𝑎 ∈ N with𝑚𝑎 ≥ 𝐹 are removed.

(b) First 𝑘 agents in N have their𝑚𝑎 increased by 𝑄 and are

removed.

(c) All agents 𝑎 ∈ N with 𝑡𝑎 ≥ 𝑇 are removed.

The result of each Round is the ordered set of agentsN \ T , and
the set of terminal agents T . Only the terminal agents are assigned

their final utility.

Definition 2.1 (Utility). The utility of each agent 𝑎 ∈ T is the

negative amount he paid

𝑢𝑎 = −𝑚𝑎 . (4)

2.2 Queue: A Game on Updating Sequences
Formally, Queue isG =G(𝐹,𝑄,𝑇 , 𝑘, 𝑝, 𝑥, 𝑥0,𝑤), where 𝐹,𝑄,𝑇 , 𝑘 and

𝑝 have the same meaning as in Section 2.1, 𝑥 is the number of

entering agents after each Round, 𝑥0 is the initial size of N and𝑤

is the horizon, i.e. the number of repetitions of Round.

2
The agents are ordered according to their average payment in ascending order, i.e.

those who paid the least on average are sorted to the front of N.

3
This simulates that with probability 𝑝 , the agent forgot to act in this Round.

4
We use stable sort, i.e. whenever there is a tie, the original order is preserved.

Queue aggregates Round in the following two simple phases.

Starting with N1
s.t. |N1 | = 𝑥0, and𝑚𝑎, 𝑡𝑎 = 0 for each 𝑎 ∈ N1

.

We repeat them𝑤-times.

(1) The agents in N𝑡
play Round and non-terminal agents pro-

ceed to the next iteration.

N𝑡+1,T 𝑡+1 ← O(N𝑡 ). (5)

(2) 𝑥 new agents enter the game

N𝑡+1 ← N𝑡+1 ∪ 𝑋, (6)

where𝑋 is a set of agents with𝑚𝑎, 𝑡𝑎 = 0, and |𝑋 | = 𝑥 . These

new agents are sorted to the end of N𝑡+1
.

In the last Round, all agents terminate, T𝑤 ← T𝑤 ∪ N𝑤
.

The new agents come from universum 𝑈 . The strategy of all

agents is then given as 𝜋 = ×𝑎∈𝑈 𝜋𝑎 . We denote space of all such

strategies as Π.
Each agents wants to choose strategy 𝜋𝑎 , which maximizes their

utility in G given strategies of other agents 𝜋−𝑎 . A strategy profile

𝜋 ∈ Π is an equilibrium, if no agent can increase his utility. Formally,

Definition 2.2 (𝜖-Equilibrium). 𝜋 ∈ Π is an 𝜖-equilibrium of G if

∀ 𝜋 ∈ Π, ∀𝑡 ∈ {1, . . .𝑤} and ∀𝑎 ∈ T 𝑡
,

E𝜋 [𝑢𝑎 (𝜋)] ≥ E(𝜋𝑎𝜋−𝑎) [𝑢𝑎 (𝜋𝑎, 𝜋−𝑎)] − 𝜖. (7)

We note that the equilibrium always exists which can be shown

by a standard transformation to a normal form game.

2.3 Avalanche Effect
Intuitively, every agent wants to pay as little as possible, while

avoiding paying 𝑄 . This translate to paying more than the others.

However, if all agents adapt this reasoning, the only option to avoid

paying 𝑄 is to pay 𝐹 . We formally show this in Section 3.1

Crucially, not all other agents can use this reasoning thanks to

the probability of ignorance. But as that vanishes, the agents should

be incentivised to pay more. Similarly, if the number of entering

agents increases, so should the total payment. We formally capture

this in the avalanche effect.

Definition 2.3 (Avalanche effect). We say that Queue exhibits the

avalanche effect if at least one of the following holds in equilibrium

when changing 𝑝 , or 𝑥 .

(1) The expected terminal payment of all agents is increasing

as 𝑝 → 0
+

lim

𝑝→0
+

d

d𝑝

∑︁
𝑎∈T

𝑚𝑎 > 0. (8)

(2) The expected terminal payment of all agents decreases slower

than 1/𝑥 as 𝑥 →∞

lim

𝑥→∞

∑︁
𝑎∈T

𝑚𝑎 = ∞. (9)

2.4 Division Problem
In our model, the judiciary period is split into𝑇 equal time intervals

and sorted at the start of each interval. The central authority can

process 𝑘𝑇 offenders over the judiciary period, and 𝑥𝑇 will enter

the system.

The central authority can influence the system in two ways.



(1) it can choose how often the sorting takes place, and

(2) it can virtually split the entering offenders into 𝑔 groups of

size 𝑥/𝑔, and process 𝑘/𝑔 offenders in each.

The Division problem is how to set 𝑇 and 𝑔 to maximize the

expected revenue the central authority receives. We refer to the

two cases as Time-Division problem and Group-Division problem
respectively.

3 ANALYTIC SOLUTION
As described in Section 1, the individual risk when the central

authority processes the agents in random order is typically small,

i.e. 𝑘𝑄/|N | ≪ 𝐹 . Each agent is also guaranteed to pay 𝑘𝑄/|N |
if everyone cooperates and shares the costs of those entering the

legal process. Let us begin by showing that this is not the case in

our proposed system. That is, there is no coalition can benefit from

choosing to pay nothing and share the cost of those forced to pay

𝑄 . In our setting, this is analogous to coalition proofness.

Proposition 3.1. Let A be a set of agents using strategy 𝜋𝑎 =

𝜎0 ∀𝑎 ∈ A, and sharing the cost, i.e. their utility becomes

𝑢̃𝑎 = − 1

|A|

𝑤∑︁
𝑖=1

∑︁
𝑎∈A∩T𝑖

𝑚𝑎, ∀𝑎 ∈ A .

If 𝑢̃𝑎 > 0, then ∃𝑎′ ∈ A s.t. 𝑎′ can deviate and increase his utility.

Proof. We split the proof into two parts according to how much

an individual needs to contribute.

(1) 0 < 𝑢̃𝑎 < 𝑄 : In this situation, not all agents of A were

forced to pay 𝑄 . Consider the agent 𝑎′ ∈ N who terminated

last. Then, since 𝑎′ paid zero, his original utility is zero and

𝑢̃𝑎 > 𝑢𝑎 . Therefore, 𝑎
′
would benefit from leaving A.

(2) 𝑢̃𝑎 = 𝑄 : In this case, all agents were forced to enter the legal

process. Any 𝑎 ∈ A would therefore benefit from paying

the fine, since then 𝑢𝑎 = 𝐹 < 𝑄 = 𝑢̃𝑎 .

□

While existence of an analytic solution of Queue remains an

open question, we can find it in certain special cases.

3.1 Active participants
Let us first focus on a situation when no agent forgets to participate

in Round, i.e. 𝑝 = 0. Then it is easy to see that 𝜋𝑎 = 𝜎𝐹 is unique

equilibrium. Consider the first agent 𝑎 ∈ N in the first Round, who

chose to pay 𝜇𝑎 < 𝐹 . Then he is forced to pay𝑄 , resulting to utility

𝑢𝑎 = −𝑄 − 𝜇𝑎 < −𝐹 . Therefore, switching to paying 𝐹 is beneficial

and the strategy of paying 𝜇𝑎 < 𝐹 is not an equilibrium. This means

all agents will pay 𝐹 in the first Round, and the situation thus repeat

in the following Round.

3.2 𝑤-Fines: Special Case of Queue
Let us focus on the system without the introduction of the option

to donate a portion of the fine. Thus after scaling currency we can

let 𝐹 = 1, and there are only two pure strategies 𝜎0, 𝜎𝐹 the agents

can take. If now 𝑇 = 𝑤 and no agents are added after each Round

𝑥 = 0, we call the game𝑤-Fines.

Definition 3.2 (𝑤-Fines). Let 𝑤 ∈ N, then we refer to reduced

Queue F(𝑤, 𝐹,𝑄, 𝑘, 𝑝, 𝑥0) = G(𝐹,𝑄,𝑤, 𝑘, 𝑝, 0, 𝑥0,𝑤) as𝑤-Fines.

We begin by showing a crucial property of𝑤-Fines.

Lemma 3.3. In the 𝑤-Fines, the expected payment of ∀𝑎 ∈ N
depends only on the actions of agents in front of 𝑎.

Proof. If 𝑎 pays zero, he remains in the Queue and is sorted in

front of agents who were behind him. He is potentially forced to

pay𝑄 , depending on the actions of agents in front of him. If he pays

𝐹 = 1, he is removed. In either case, the actions of agents behind 𝑎

have no impact on his payment. □

In each Round, 𝑎 ∈ N has 𝑛𝑎 − 1 agents in front of him. Due to

the probability of ignorance, even if all the agents decide to pay, 𝑎

can estimate the probability that at most 𝑘 − 1 will forget. If that
happens, 𝑎 will be forced to pay 𝑄 in this Round. Formally,

Definition 3.4. Let 𝑛 be a positive integer. We denote by 𝛼 (𝑝, 𝑛, 𝑘)
the probability that in 𝑛 − 1 independent coin tosses with the head

probability 𝑝 , the number of heads is less than 𝑘 .

Since 𝛼 will be important in the following discussion, we briefly

mention some of its properties.

Lemma 3.5. Let 𝑘 < 𝑛𝑝 , then 𝛼 (𝑝, 𝑛 + 1, 𝑘) ≤ 𝑒
− (𝑛𝑝−𝑘 )

2

2𝑛𝑝 .

Proof. Let 𝜉𝑖 denote the random variable such that

𝜉𝑖 =

{
1 w.p. 𝑝,

0 otherwise ,

and 𝜉𝑛 =
𝑛∑
𝑖=1

𝜉𝑖 . Thus,E[𝜉𝑖 ] = 𝑝 andE[𝜉𝑛] = 𝑛𝑝 . As per the Chernoff

bounds, P[𝜉𝑛 ≤ (1 − 𝛿)𝑛𝑝] ≤ 𝑒
−𝛿2𝑛𝑝

2 , for all 0 < 𝛿 < 1. Thus

𝛼 (𝑝, 𝑛 + 1, 𝑘) = P[𝜉𝑛 ≤ 𝑘] ≤ 𝑒
−
(
1− 𝑘

𝑛𝑝

)
2

𝑛𝑝/2
= 𝑒
− (𝑛𝑝−𝑘 )

2

2𝑛𝑝
. □

Proposition 3.6. If 𝛼 (𝑝, 𝑛, 𝑘) ≤ 𝐹/𝑄 ≤ 1

4
then 𝑛𝑝 > 𝑘 . Moreover

for large enough 𝑛, 𝛼 (𝑝, 𝑛, 𝑘) ≥ 𝛼 (𝑝, 2𝑛, 2𝑘).

Proof. For 𝛾 ∼ 𝐵(𝑛, 𝑝) if 𝑝 < 1 − 1

𝑛 , then
1

4
< Pr(𝛾 ≤ 𝑛𝑝) [4].

Therefore, when
1

4
≥ 𝐹

𝑄
, then 𝑘 < 𝑛𝑝 . Further, we note that Lemma

3.5 is tight for large enough 𝑛𝑝 . Hence, it suffices to prove the

proposition for the upper bound 𝑒
− (𝑛𝑝−𝑘 )

2

2𝑛𝑝
for which the statement

clearly holds. □

Finally, we formulate a conjecture that if true, would allow us to

extend the analytic study of the division problem presented below.

Conjecture 3.7. For 𝑝𝑛 > 𝑘 , 𝛼 (𝑝, 𝑛, 𝑘) ≥ 𝛼 (𝑝, 𝑛 + 𝑛/𝑝, 2𝑘).

3.2.1 Single Sorting Instance. We start by analysing the 1-Fines

game, which is equivalent to one Round. In this case, when an agent

is sufficiently far from the start ofN , it is beneficial to pay nothing,

while near the start it is beneficial to pay and avoid paying 𝑄 . The

boundary between the two will prove important.

Definition 3.8 (Critical strategy). Let 𝑟 ∈ N be the smallest such

that 𝛼 (𝑝, 𝑟, 𝑘)𝑄 ≤ 𝐹 . Then 𝑟 is called critical position.



The critical strategy is

𝜋crit𝑎 (𝑛𝑎, 𝑡𝑎,𝑚𝑎) =
{
𝜎𝐹 if 𝛼 (𝑝, 𝑛𝑎, 𝑘)𝑄 > 𝐹,

𝜎0 otherwise.
(10)

We note that 𝑡𝑎 = 1 and𝑚𝑎 = 0 ∀𝑎 ∈ N for 1-Fines. We will

show that 𝜋crit𝑎 is the only equilibrium of the 1-Fines. First, we

define 𝛼crit as the probability with which an agent is forced to pay

𝑄 when all agents follow 𝜋crit𝑎 .

Proposition 3.9. Let 𝑟 be the critical position. Then if agents
follow 𝜋crit𝑎 , ∀𝑎 ∈ N are forced to pay 𝑄 w.p.

𝛼crit (𝑝, 𝑟, 𝑛𝑎, 𝑘) =
{
𝛼 (𝑝, 𝑛𝑎, 𝑘) if 𝑛𝑎 < 𝑟,

𝛼 (𝑝, 𝑟, 𝑘 − (𝑛𝑎 − 𝑟 )) otherwise.
(11)

Proof. Fix 𝑎 ∈ N . When 𝛼 (𝑝, 𝑛𝑎, 𝑘) > 𝐹/𝑄 (i.e. 𝑛𝑎 < 𝑟 ), then

agents in front of 𝑎 pay 𝐹 and thus 𝑎 will not pay 𝑄 only if enough

of them forget. If 𝑛𝑎 ≥ 𝑟 , then 𝑛𝑎 − 𝑟 agents choose not to pay.

Therefore, 𝑎 only needs 𝑘 − (𝑛𝑎 − 𝑟 ) of the 𝑟 agents to forget. □

Observe that 𝛼crit ≤ 𝛼 , since some agents may choose to pay

zero. Also, by Definition 3.4, 𝛼crit = 0 for 𝑛𝑎 > 𝑟 + 𝑘 .
Proposition 3.10. Let 𝑟 be the critical position and let all agents

follow 𝜋crit𝑎 , except for 𝑎 ∈ N , whose strategy is 𝜋𝑎 = (𝑞, 1−𝑞). Then
the expected payment of 𝑎 is

(1 − 𝑝 − 𝑞)𝐹 + (𝑝 + 𝑞)𝛼crit (𝑝, 𝑟, 𝑛𝑎, 𝑘)𝑄. (12)

Proof. By definition of 𝜋𝑎 , 𝑎 pays 𝐹 w.p. 1 − 𝑝 − 𝑞 and he does

not forget. If he does, or pays zero w.p. 𝑞, he is forced to pay 𝑄 w.p.

𝛼crit (𝑝, 𝑟, 𝑛𝑎, 𝑘). □

Corollary 3.11. Let 𝑟 be the critical position and let all agents
follow 𝜋crit𝑎 . Then the expected payment of 𝑎 ∈ N is

𝐺1

𝑎 (𝑝, 𝑛𝑎, 𝑘) =
{
(1 − 𝑝)𝐹 + 𝑝𝛼crit (𝑝, 𝑟, 𝑛𝑎, 𝑘)𝑄, if 𝑛𝑎 < 𝑟,

𝛼crit (𝑝, 𝑟, 𝑛𝑎, 𝑘)𝑄, otherwise.
(13)

Theorem 3.12. The strategy 𝜋crit𝑎 is unique equilibrium of 1-Fines.

Proof. Consider 𝑎 ∈ N in the sorted order. We will show by

induction 𝜋crit𝑎 is a unique best-response to strategies of agents in

front of a given agent. For the first agent, 𝜋crit𝑎 clearly maximizes

the utility −𝐺𝑎 of 𝑎. In the induction step we assume 𝑎′ in front of 𝑎

follow 𝜋crit𝑎 . Following Lemma 3.3, the actions of the others can be

arbitrary. Observe the 𝜋crit𝑎 minimizes the expected payment (12).

Thus 𝑎 wants to follow 𝜋crit𝑎 . □

3.2.2 Two Sorting Instances. In this section we present analytic

solution of the 2-Fines game. We start by defining extension of 𝜋crit𝑎 ,

and showing no agent can benefit by deviating from it. Later, we

discuss some properties of this analytic solution.

In 2-Fines, no agents are added after sorting. After the first Round

the game is thus identical to 1-Fines. This recursive relation mo-

tivates us to introduce the analogues of the variables used in the

previous section recursively. We use upper index to denote the

game length𝑤 and number of Round, i.e. in the previous section

we would use 𝑟1,1 for the critical position 𝑟 .

We extend Definition 3.8 of critical strategy to pay 𝐹 if 𝑎’s posi-

tion is in front of some critical position 𝑟2,𝑡 , defined below. Note

that since the second Round corresponds to 1-Fines, 𝑟2,2 = 𝑟1,1 = 𝑟 .

Definition 3.13 (2-Critical strategy). The 2-critical strategy is

𝜋
crit,2
𝑎 (𝑛𝑎, 𝑡𝑎,𝑚𝑎) =

{
𝜎𝐹 if 𝑛𝑎 < 𝑟2,𝑡𝑎 ,

𝜎0 otherwise.
(14)

Let all agents follow 𝜋
crit,2
𝑎 . Then if 𝑎 ∈ N1

does not terminate

in the first Round, his expected payment in the second Round is

G2𝑎 (𝑝, 𝑛𝑎, 𝑘) = E𝛾∼𝐵 (min(𝑛𝑎,𝑟 2,1)−1,1−𝑝) [𝐺
1

𝑎 (𝑝, 𝑛𝑎 −𝛾 − 𝑘, 𝑘)], (15)

where𝐺1

𝑎 is the expected payment given in Corollary 3.11. In words,

since all agents positioned in front of min(𝑛𝑎, 𝑟2,1) want to pay 𝐹 ,

𝑎’s position decreases by 𝛾 + 𝑘,𝛾 ∼ 𝐵(min(𝑛𝑎, 𝑟2,1) − 1, 1 − 𝑝). At
the new position, 𝑎 is expected to pay 𝐺1

𝑎 .

Similarly to Definition 3.8, we define the critical position in

the first Round as the smallest 𝑟2,1 ∈ N such that 𝛼 (𝑝, 𝑟2,1, 𝑘)𝑄 +
(1 − 𝛼 (𝑝, 𝑟2,1, 𝑘))G2𝑎 (𝑝, 𝑟2,1, 𝑘) ≤ 𝐹 . In words, assume all agents in

front of 𝑎 want to pay 𝐹 . In the first Round, if 𝑎 pays zero he risks

paying 𝑄 w.p. 𝛼 and the expected payment in the second Round

w.p. 1 − 𝛼 . The critical position 𝑟2,1 is the smallest position 𝑛𝑎 at

which, assuming all agents in front of that position try to pay 𝐹 , it

is beneficial to pay zero.

Lemma 3.14. Let 𝑟2,𝑡 be the critical position in Round 𝑡 ∈ {1, 2}.
Then 𝑟2,1 ≥ 𝑟2,2 + 𝑘 .

Proof. By definition, 𝑟2,1 is the smallest such that𝛼 (𝑝, 𝑟2,1, 𝑘)𝑄+
(1 − 𝛼 (𝑝, 𝑟2,1, 𝑘))G2𝑎 (𝑝, 𝑟2,1, 𝑘) ≤ 𝐹 . For a contradiction we assume

that 𝑟2,1 < 𝑟2,2 + 𝑘 . It suffices to show that G2𝑎 (𝑝, 𝑟2,1, 𝑘) > 𝐹 since

this inequality along with 𝑄 > 𝐹 violates the defining property of

𝑟2,1.

If 𝑟2,1 − 𝑘 < 𝑟2,2 = 𝑟1,1 then for each 𝛾 ≥ 0,

𝐺𝑎 (𝑝, 𝑟2,1 − 𝛾 − 𝑘, 𝑘) = (1 − 𝑝)𝐹 + 𝑝𝛼 (𝑝, 𝑟2,1 − 𝛾 − 𝑘, 𝑘)𝑄,

see Corollary 3.11 and Proposition 3.9.

Moreover, by the definition of 𝑟1,1 = 𝑟 ,

𝛼 (𝑝, 𝑟2,1 − 𝛾 − 𝑘, 𝑘)𝑄 > 𝐹 .

Hence for each 𝛾 ≥ 0,

𝐺𝑎 (𝑝, 𝑟2,1 − 𝛾 − 𝑘, 𝑘) > 𝐹

and thus G2𝑎 (𝑝, 𝑟2,1, 𝑘) > 𝐹 .

□

Proposition 3.15. Let all agents follow 𝜋
crit,2
𝑎 . Then the expected

payment of 𝑎 ∈ N is

𝐺2

𝑎 (𝑝, 𝑛𝑎, 𝑘) =
{
(1 − 𝑝)𝐹 + 𝑝𝑋 2 (𝑝, 𝑟2,1, 𝑛2, 𝑘), if 𝑛𝑎 < 𝑟2,1,

𝑋 2 (𝑝, 𝑟2,1, 𝑛2, 𝑘), otherwise,
(16)

where
𝑋 2 (𝑝, 𝑟2,1, 𝑛2, 𝑘) =

𝛼crit (𝑝, 𝑟2,1, 𝑛𝑎, 𝑘)𝑄 + (1 − 𝛼crit (𝑝, 𝑟2,1, 𝑛𝑎, 𝑘))G2𝑎 (𝑝, 𝑟2,1, 𝑘).

We are now ready to show the main result of this section.

Theorem 3.16 (Eqilibrium of 2-Fines). 𝜋
crit,2
𝑎 is unique equi-

librium of 2-Fines.



Proof. The second Round, corresponding to 1-Fines, has a unique

equilibrium (10). In the first Round, we can use a modification of

proof of Theorem 3.12. Consider now agents in the sorted order.

Using Lemma 3.3, we can again use induction over agents. For each

𝑎 ∈ N1
let his strategy be 𝜋𝑎 = (𝑞, 1 − 𝑞) and let all agents in front

of him follow 𝜋
crit,1
𝑎 . Then his expected payment in a Round is

𝐺1

𝑎 (𝑝, 𝑛𝑎, 𝑘) = (1−𝑝 −𝑞)𝐹 + (𝑝 +𝑞)
(
𝛼crit𝑄 + (1 − 𝛼crit)G2𝑎

)
, (17)

where we drop the arguments from 𝛼crit (𝑝, 𝑟2,1, 𝑛𝑎, 𝑘) for brevity.
This is because w.p. 1 − 𝑝 − 𝑞 he pays 𝐹 and leaves. Otherwise,

since all agents in front of him follow 𝜋
crit,1
𝑎 , he is forced to pay

𝑄 w.p. 𝛼crit. The remaining option is that he proceeds to the next

Round, where his expected payment is G2𝑎 . Strategy 𝜋
crit,1
𝑎 is chosen

to minimize 𝑎’s expected payment (17), since 𝛼crit ≤ 𝛼 . Therefore,

𝑎 will follow it even in the first Round. □

Theorem 3.17. The equilibrium strategies of both 1-Fines and
2-Fines exhibit the avalanche effect.

Proof. Since lim𝑝→0
+ 𝛼 (𝑝, 𝑛, 𝑘) = 1 and 𝑄 > 𝐹 , the critical

position in the last Round 𝑟1,1, 𝑟2,2 → ∞. Using Lemma 3.14, the

equilibrium strategies of both 𝑡-Fines satisfy 𝜋
crit,𝑡
𝑎 → 𝜎𝐹 ∀𝑡 = 1, 2.

Thus, 𝜋
crit,𝑡
𝑎 satisfies Definition 2.3. □

In this simplified model, decreasing the probability of ignorance

virtually increases the number of state employees assigned to pro-

cessing the fines. This allows the central authority to increase the

total payment through advertising, rather than hiring additional

employees, which may be much cheaper. We show in Section 4 that

these results translate well to a more general case where non-zero

number of agents enter the system in each Round.

3.2.3 Division problem. To give a partial answer to the Division

problem in this setting, we will compare the total expected payment

of 2-Fines with 𝑘 , and 1-Fines with 2𝑘 .

Proposition 3.18. Let 𝑟2,2 be the critical position in the second
Round of 2-Fines, and let all players follow 𝜋

crit,2
𝑎 . Then the total

expected payment is at least

2𝐹 (1 − 𝑝) (𝑟2,2 − 1) + 2𝑘𝑄. (18)

Proof. In the first Round, (1 − 𝑝) (𝑟2,1 − 1) agents are expected
to pay 𝐹 , and 𝑘 are forced to pay 𝑄 . In the second, the situation is

analogous, so the total expected payment is

𝐹 (1 − 𝑝) (𝑟2,1 + 𝑟2,2 − 2) + 2𝑘𝑄.

The statement follows from Lemma 3.14. □

Theorem 3.19. Let 𝑄 ≫ 𝐹 . Then the equilibrium strategy of
F(2, 𝐹 ,𝑄, 𝑘, 𝑝, 𝑥0) achieves a higher total payment than the equilib-
rium of F(1, 𝐹 ,𝑄, 2𝑘, 𝑝, 𝑥0) in expectation.

Proof. Let us denote the critical position in 1-Fines with 2𝑘 by

𝑟1,1 (2𝑘) and in 2-Fines with 𝑘 by 𝑟2,1 (𝑘), 𝑟2,2 (𝑘) respectively. In the

former, 𝑟1,1 (2𝑘) − 1 agents will pay 𝐹 w.p. (1−𝑝), and 2𝑘 are forced

to pay 𝑄 . Therefore, the total expected payment is

𝐹 (1 − 𝑝) (𝑟1,1 (2𝑘) − 1) + 2𝑘𝑄. (19)

By comparing this to Eq. (18), all we need to show is that 𝑟1,1 (2𝑘) <
2𝑟2,2 (𝑘). ByDefinition 3.8 this is equivalent to𝛼 (𝑝, 2𝑛, 2𝑘) < 𝛼 (𝑝, 𝑛, 𝑘).
Since 𝑄 ≫ 𝐹 , this is true by Proposition 3.6. □

Question. Is 𝑛1 (2𝑘) < 𝑛1 (𝑘) + 𝑛1 (𝑘)/𝑝?

3.2.4 Three Sorting Instances. Again, we extend Definition 3.8 and

Definition 3.13 of critical strategies to pay 𝐹 if 𝑎’s position is in

front of some critical position 𝑟3,𝑡 , defined below. Note that since

the second Round corresponds to 2-Fines, 𝑟3,3 = 𝑟2,2 = 𝑟1,1 = 𝑟 and

𝑟3,2 = 𝑟2,1.

Definition 3.20 (3-Critical strategy). The 3-critical strategy is

𝜋
crit,2
𝑎 (𝑛𝑎, 𝑡𝑎,𝑚𝑎) =

{
𝜎𝐹 if 𝑛𝑎 < 𝑟2,𝑡𝑎 ,

𝜎0 otherwise.
(20)

Let all agents follow 𝜋
crit,3
𝑎 . Then if 𝑎 ∈ N1

does not terminate

in the first Round, his total expected payment in the remaining

rounds is

G3𝑎 (𝑝, 𝑛𝑎, 𝑘) = E𝛾∼𝐵 (min(𝑛𝑎,𝑟 3,1)−1,1−𝑝) [𝐺
2

𝑎 (𝑝, 𝑛𝑎 −𝛾 − 𝑘, 𝑘)], (21)

where 𝐺2

𝑎 is the expected payment given in Proposition 3.15. In

words, 𝑎’s position decreases by 𝛾 + 𝑘 . At the new position, he is

expected to pay 𝐺2

𝑎 .

Similarly to Definition 3.8, we define the critical position in the

first Round as the smallest 𝑟3,1 ∈ N such that 𝛼 (𝑝, 𝑟3,1, 𝑘)𝑄 + (1 −
𝛼 (𝑝, 𝑟3,1, 𝑘))G3𝑎 (𝑝, 𝑟3,1, 𝑘) ≤ 𝐹 .

In words, assume all agents in front of 𝑎 want to pay 𝐹 . In the

first Round, if 𝑎 pays zero he risks paying𝑄 w.p. 𝛼 and the expected

payment in the remaining rounds w.p. 1 − 𝛼 . The critical position
𝑟3,1 is the smallest position 𝑛𝑎 at which, assuming all agents in

front of that position try to pay 𝐹 , it is beneficial to pay zero.

4 EXPERIMENTS
We investigate two approaches based on how the agents choose

their payments. In Section 4.1, we define a simple strategy based

on how the agent’s position changes over the course of the Queue.

In Section 4.2, we use reinforcement learning to obtain a strategy

which approximates equilibrium. In both cases we simplify the

model by assuming the function 𝜋𝑎 is the same for all agents.

4.1 Basic Rational Strategy
To model behaviour of real decision makers, we introduce basic
rational strategy (BRS). Informally, each agent keeps track of a

quantity he is willing to pay in each Round. If, based on his shift in

Queue since last Round, he determines he will reach the beginning

before 𝑇 steps, his willingness to pay increases. Formally,

Definition 4.1 (basic rational strategy). Let 𝑎 ∈ N , (𝑛′𝑎, 𝑡 ′𝑎,𝑚′𝑎) be
the observation of 𝑎 in previous Round, and (𝑛𝑎, 𝑡𝑎,𝑚𝑎) his current
observation. We call 𝜔𝑎 the willingness to pay of 𝑎. In the first

Round 𝑎 participates in, i.e. when 𝑡𝑎 = 0, his willingness to pay

is 𝜔𝑎 = 0. In subsequent Round games, the willingness to pay is

updated before declaring 𝜋𝑎 according to

𝜔𝑎 ←
{
min(𝐹 −𝑚𝑎, 𝜔𝑎 + 1), 𝑛𝑎 < (𝑛𝑎 − 𝑛′𝑎) (𝑇 − 𝑡𝑎),
max(0, 𝜔𝑎 − 1), otherwise.

(22)

The strategy of 𝑎 is to pay 𝜔𝑎 , i.e. 𝜋𝑎 = 𝜎𝜔𝑎
.
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Figure 1: Evolution of NashConv during training, averaged
over ten random seeds.

Note that this is a generalization of the approach introduced

in Section 2.1, as 𝜋𝑎 is not a function of only the observation in

the current Round, but also depends on history. This makes this

strategy non-Markovian. As such, the Definition 2.2 does not apply.

However, in our experiments we simply assess the effect of agents

using BRS, and make no claims regarding its optimality.

4.2 Reinforcement Learning
In order to approximate an equilibrium of Queue, we employ an

iterative algorithm. In each iteration, the algorithm approximates

𝜋𝑎 such that

𝜋𝑎 ∈ argmax E(𝜋𝑎,𝜋−𝑎) [𝑢𝑎 (𝜋𝑎, 𝜋−𝑎)] . (23)

In words, we find 𝜋𝑎 such that it maximizes utility of 𝑎, assuming

N \ {𝑎} follow 𝜋 . We denote as 𝜏 the iteration of the learning

algorithm and 𝜋𝜏 the strategy the algorithm approximates the best-

response against in iteration 𝜏 .

We use PPO [7] to find 𝜋 , utilizing trajectories of all terminal

agents for the update. For details on our implementation, see Ap-

pendix A. This approach is not guaranteed to converge in general

but if it does converge, the resulting strategy is an equilibrium [3].

Similar approach was successfully used before [1].

4.2.1 NashConv. In order to quantify the quality of the learned

solution, we adapt the notion of NashConv [6]. NashConv measures

the negative difference in utility agents are expected to receive

under 𝜋𝜏 and the approximate best-response 𝜋𝜏+1. We approximate

the latter by having a fraction of agents 𝜌 follow 𝜋𝜏+1 while the
rest follows 𝜋𝜏 . Formally,

Definition 4.2 (NashConv). Let each agent added to Queue follow

𝜋𝜏+1 w.p. 𝜌 and 𝜋𝜏 otherwise. Let N be the set of agents following

𝜋𝜏+1 and their expected utility

EU(𝜌, 𝜋𝜏+1, 𝜋𝜏 ) = E(
𝜋𝜏+1
N

,𝜋𝜏

−N

) [𝑢𝑎 (𝜋𝜏+1𝑎 , 𝜋𝜏−𝑎) |𝑎 ∈ N
]
.

Then

NashConv
𝜏 (𝜌) = EU(𝜌, 𝜋𝜏+1, 𝜋𝜏 ) − E𝜋𝜏

[
𝑢𝑎 (𝜋𝜏 )

]
. (24)

NashConv and 𝜖-equilibrium are closely connected. If 𝜌 is small

enough such that |N | ≪ |N |, then NashConv ≈ 𝜖 . In Figure 1 we

present a representative example of the evolution of NashConv

during learning. We averaged the results over ten random seeds,

and also show the standard error. The results suggest that, although

there is a considerable amount of noise, the algorithm was able to

reach a sufficiently close approximation of the equilibrium. More-

over, we verified this trend translates to other experiments pre-

sented below.

4.3 Results
In this section, we numerically demonstrate the Avalanche effect

and the Division problem. Specifically, we show the total expected

revenue, which is given as

E𝜋

[∑︁
𝑎∈T

𝑚𝑎

]
. (25)

Unless stated otherwise, we use 𝐹 = 𝑇 = 4, 𝑄 = 6, 𝑥 = 𝑥0 = 32,

𝑘 = 2 and 𝑝 = 1/2 in all our experiments.

4.3.1 Avalanche Effect. In Figure 2 we show the total expected

payment as a function of the probability of ignorance 𝑝 , and the

number of entering agents 𝑥 . The results suggest that the Queue

exhibits the Avalanche effect in a general setting. In fact, it exhibits

both properties of Definition 2.3. Interestingly, the learned solution

achieves a considerably lower total payment compared to BRS.

4.3.2 Division problem. In this section we numerically study the

Division problem introduced in Section 2.4. Results for both the

Time- and Group-Division problem are presented in Figure 3.

For the Time-Division problem, BRS seems to drastically overpay

the learned strategy if the sorting is frequent, i.e. 𝑇 is large. On the

other hand, when𝑇 is small the willingness to pay doesn’t increase.

This leads to paying only 𝑘𝑄 = 48 for 𝑇 = 1, while the learned

strategy prefers to pay more. When the game is sorted more often,

the learned strategy seems to favor lower total payments.

In the Group-Division scenario, both BRS and the learned strat-

egy pay less in larger system. Splitting the game into several smaller

thus increases the total payment of the offenders. This is in agree-

ment with the analytic solution presented in Section 3.2.2, suggest-

ing the incoming agents don’t impact Queue much.

5 CONCLUSION
In this work, we suggest a simple mechanism for collecting fines

for traffic violations in large cities, by a small number of adminis-

trators. We show analytically and on realistic experiments that this

simple mechanism exhibits the Avalanche effect and thus supports

non-cooperation of offenders. We quantify the fines collection in

expectation. Finally, we present some initial results towards under-

standing the effective use of the administrators, i.e., the Division

problem.

Future work: Further study of the Division problem, in particular

possible strengthening of Lemma 3.14 and proving Conjecture 3.7

is our work in progress.
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Figure 2: Expected total payment of terminal agents for varying probability of ignorance 𝑝 (left) and number of incoming
offenders 𝑥 (right). The figures demonstrate the Avalanche effect defined in Section 2.3.

T = 1
k = 8

T = 2
k = 4

T = 4
k = 2

T = 8
k = 1

Number of Splits (T)

20

40

60

80

100

120

Av
er

ag
e 

To
ta

l P
ay

m
en

t

Time-Division Problem
Reinforcement Learning
Basic Rational Strategy

g = 1 g = 2 g = 4 g = 8
Number of Groups (g)

90

95

100

105

110

Av
er

ag
e 

To
ta

l P
ay

m
en

t i
n 

Al
l G

ro
up

s

Group-Division Problem

Reinforcement Learning
Basic Rational Strategy

Figure 3: Expected total payment of terminal agents for varying number of sortings 𝑇 (left) and number of splits 𝑔 (right). The
figures investigate the Division problem defined in Section 2.4.

We see a limitation of our numerical approach in that we limit

ourselves to scenarios where all agents share the same strategy 𝜋𝑎 .

Wewould like to improve on our results by having each agent follow

a leader, and training each leader separately. In this framework, we

could also access the exploitability of BRS, by having the learned

agents in the same system.

A LEARNING ALGORITHM
The shared strategy 𝜋𝑎 is represented by a neural network and

trained from trajectories of all terminal agents. When selecting

the strategy for a Round, we mask all actions which would lead to

𝑚𝑎 + 𝜇𝑎 > 𝐹 . This makes the agents unable to overpay the fine 𝐹 .

We use fully-connected networks for both the actor and the critic.

Both accept the scaled observation of 𝑎 in Round, i.e. (𝑛𝑎, 𝑡𝑎,𝑚𝑎).



The actor network has two hidden layers with four hidden units,

and the critic has three hidden layers with 32 units each, all using

the ReLU activation function. The rest of the hyperparameters are

given in Table 1.

Parameter Value Description

𝜀 0.05 Policy update clipping

𝛾 1 Reward discounting

𝜆 0.95 Advantage decay factor

𝑁train 16 Number of training updates per cycle

𝑁
epochs

512 Number of training epochs

𝑁train 10
4

Train buffer size

𝛼actor 3 · 10−4 Actor learning rate

𝛼critic 10
−3

Critic learning rate

𝑐H 10
−3

Entropy regularization weight

𝑐 0.1 Gradient norm clipping

Table 1: Hyperparameters of the learning algorithm.
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